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Abstract-Schuh’s [1] theory of steady laminar flow above a line heat source in a fluid with Pr = 0.7 
is extended to fluids such as heavy oils. The solution is valid for all fluids of high Prandtl number, 

regardless of whether the viscosity is temperature-dependent or not. 

R&n&-Le theorie de Schuh de l’ecoulement laminaire permanent, au-dessus dune source de 
chaleur lineaire, dans un fluide dont Pr = 0,7, a Ctt Ctendue aux fluides tels que les huiles lourdes. 
La solution est valable pour tous les fluides a grand nombre de Prandtl, que leur viscosite varie ou 

non avec la temperature. 

Zusammenfassung-Die Theorie von Schuh der station&en Laminarstromung tlber einer linien- 
formigen Warmequelle in einer Fliissigkeit mit Pr = 0,7 wird auf andere Fliissigkeiten wie Schweriile 
erweitert. Die Losung gilt fur alle Fltissigkeiten hoher Prandtlzahl, gleichgiiltig ob ihre Viskositat 

temperaturabhangig ist oder nicht. 

AHnoTaurw-IIpMnoweHMe TCOfNIll maX3 1 06 J'CTEUIOBHBIIIeMCfl JIaMHHaPHOM IIOTOKO HaA 

naneBnbrM HCTO~HHHOM Terma n ~nfi~ocrn c Pr = 0,7 pacnpocrpanaercn Ha ramre NIJJKOCTH, 

KaKTFIlfEWIbIe MBCJI3. 3T0 PNIIeHlle CIIpaBeAJIEiBO AJIR.BCt?XWIAKOCT&C 6OJIbIIIBMHYllCJI3MEI 

~p3HAT.WHe33BHCIIMO OTTOrO, 33BEICHTJILlBHSKOCTb OTTeMIIepaTypbI. 

NOTATION 

c specific heat of the fluid at constant 
pressure; 

f */fP% &w; 
g gravitational acceleration; 
k thermal conductivity of fluid; 
L%‘(X) vertical mass flux per unit length ; 
Prm cmpCLlkm, Prandtl number in the un- 

disturbed fluid; 
.I 

9 rate of heat transfer from unit length of 
source; 

t fluid temperature; 
24 fluid velocity in vertical direction; 

V 

x 

Y 

* Professor of Heat Transfer. 
t Present address-Rocket Propulsion Establishment, 

Westcott, Near Aylesbury, Bucks., England. X 

55 

fluid velocity in horizontal direction; 
vertical height above the heat source; 
horizontal distance from the plane of 
symmetry; 
volumetric thermal expansion coefficient ; 
a small number; 
A1’5/x2’5 J;p/pm . dy; 
(t - t co)g/?x~‘~/v$44’~; 

4’Nc~Pmv:; 
dynamic viscosity of the fluid; 
kinematic viscosity of the fluid; 
-f “/j-;3'2; 
fluid density; 
(t - tm); 
stream function; 
f'lfb. 
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Subscripts 
0 in the central plane; 

in the undisturbed fluid; 
CT)> (I), 12), . - - zeroth, first, second, _ . . approxi- 
mations. 

1. INTRODUCTION 

1.1 The problem 
HEAVY oil stored in a tank is sometimes heated 
by horizontal steam pipes placed near the tank 
floor. When calculating the temperature distribu- 
tion which will be found in the tank after heating 
has continued for a given time, it is important 
to know how much oil is convected upwards in 
the plume of heated fluid which forms itself 
above the pipe. 

The present paper provides a theory for the 
steady laminar flow in a plume above a long 
horizontal heat source in a large tank of stagnant 
oil. Although this system is idealized, as com- 
pared with tanks of finite size containing several 
heating pipes and with slowly changing bulk 
temperature, it is thought that the analysis may 
form a first step towards predicting what happens 
in practice. 

1.2 Previous work on the subject 
Schuh [I] has developed a theory for the 

laminar buoyant flow above a two-dimensional 
heat source in a fluid of Prandtl number equal to 
0.7. Since oils have Prandtl numbers which are 
very much greater than unity, we shall rework 
Schuh’s problem for the case of infinite Prandtl 
number. 

In Schuh’s work the transport properties of 
the fluid were taken to be uniform. Since oils 
have viscosities which depend steeply upon 
temperature, we shall take account of this 
dependence. It will be shown that this involves 
trivial dj~culty when the Prandtl number is 
large. 

1.3 Outline of main result 
The main result of the analysis is given in 

equation (19) below; this shows that the upward 
mass flow rate per unit length is proportional to 
the one-fifth power of the heat flux per unit 
length, the three-fifths power of the distance 
above the heat source, and the two-fifths power 
of the bulk viscosity of the oil. 

2. MAT~MATICAL ANALYSIS 

2.1 Equations and boundary conditions 
The velocity and temperature distributions in 

the fluid are described by the following equa- 
tions : 

Mass continuity 

(pu), + (PC), = 0 : ;: == *, : z’p- = *, (1) 
Pm 

Momentum 

Energy 

pufc+ + pc(c4, = (kT,),. 13) 

Dimensional analysis indicates that the vari- 
ables are related by: 

(4) 

Equations (i), (2) and (3) are transformed by 
equations (4) into the foliowing ordinary differ- 
ential equations, which are identical to Schuh’s 
{l] equations for the case of constant properties: 

where the prime denotes differentiation with 
respect to 7, and other notation is given in 
section 5 below. 

The boundary conditions may be expressed as : 

v=o: f”=.():&=O-) 

r/=OC:,f’ = 010 -01 (7) 

and, in addition, 

J; f ‘8drl = 4. (8) 

The differential equations involve the usual 
boundary-layer assumptions. In addition it is 
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supposed that there is no influence of the force 
exerted on the fluid at the heat source. These 
assumptions are probably fulfilled in practice at a 
height which is sufficiently far above the steam 
pipe; they are responsible for the reduction of 
the partial differential equations to ordinary 
ones, i.e. for the existence of “similar” velocity 
and temperature profiles. Equation (8) equates 
the enthalpy flux through any horizontal plane 
to the rate of energy release from the heat source. 

2.2 Equations and boundary conditions for large 
Prandtl number 

The following argument shows that a solution 
to equations (5) and (6) may be obtained with 
little difficulty for the case of large Prandtl 
number. 

Step (i). When the Prandtl number is high, the 
thermal boundary layer is much thinner than the 
velocity layer. (This fact, which is familiar from 
other boundary-layer studies, is proved a 
posteriori in section 2.3.) 

Step (ii). Since the vertical velocity in the thin 
thermal layer is approximately uniform in a 
horizontal plane, we can write: 

f’mff6: :. f w Tf;. (9) 

We assume that c, p, k are substantially in- 
variant with temperature for oils, since it is the 
rapid variation in viscosity with temperature 
which is of major concern (p N tS approx.). 
Equation (6) now assumes the asymptotic form: 

8” + ;Pr oofi[$?]’ = 0. (10) 

Step (iii). A further consequence of Step (i) 
is that 8 can be taken to be equal to zero in the 
region surrounding the thermal boundary layer, 
7 > E, where E is a small quantity. Equation (5) 
can therefore be re-written as: 

+ e - ;.f;” = 0 (11) 

E < 7j < co : f”’ + pfs” - J.f’2 = 0. (12) 

Step (iv). The boundary conditions for (11) 
and (12) become: 

y=O: f”Z0 
7j = < : f” =fi’ > 

(13) 

7 = E: f =O :f’=f6:f” =fZ’ 

7 = 00 :f’=O > 
(14) 

Conclusion. Our problem is thus reduced to 
the solutions of: equation (10) subject to the 
conditions (7) and (S), in the domain 0 < 7 < E; 
equation (I 1) subject to the conditions (13) in 
the same domain; and equation (12) subject to 
the conditions (14) in the domain 71 > E. Only 
the last equation has to be solved numerically as 
will now be seen. 

2.3 Solution of the diflerential equations 
Equation (10) and its appropriate conditions 

are readily seen to be solved by: 

Were it not that fi is an as yet undetermined 
number, equation (15) would completely de- 
scribe the temperature distribution in the plume. 
It should be noted that the equation confirms that 
0 falls off rapidly with 7 when Pr Q) is large. 
Correspondingly, the maximum value of 8, 
which occurs when 7 = 0, increases as the square 
root of Prandtl number. 

Equation (11). By integrating with respect to 
7, we obtain: 

- ;-f;% = 0. (1W 

Introducing the boundary conditions (13) and 
the integral condition (S), and noting that c is 
a small quantity, we see that equation (1 la) 
reduces to : 

f;f:’ + !I = 0. (16) 

This result is independent of the mode of varia- 
tion of viscosity with temperature. 

Equation (12). Equation (16) can be used to 
displace f :’ from the conditions on equation (12), 
which can now be regarded as defining an 
eigenvalue problem, f 6 being the quantity to be 
determined. 

The procedure for solution of this problem is 
indicated in the Appendix; the equation has been 
solved by an iterative quadrature method after 



58 D. B. SPALDING and R. G. CRUDDACE 

the manner of Crocco [2]. For present purposes 
it suffices to note the result: 

f; = 0.9335. (17) 

Also calculated was f m, which took the value : 

fm = owf I dv = 1.346. 
s 

(18) 

The variation off’ with 7 corresponding to the 
solution is shown in Fig. 1 as the curve marked: 
Pr, = co. 
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FIG. I. Non-dimensional velocity distributions 
above heated line source in laminar steady flow. 

3. DISCUSSION 

3.1 Interpretation of the result 
Equation (18), when translated into physical 

quantities, signifies: 

k’(x) = 21; pudy = 2.69[$g/Ip$:x3/c,]1’5. (19) 

Thus the mass flow rate in the plume increases 
in accordance with the one-fifth power of the 
heating rate, the two-fifths power of the viscosity 
in the bulk of the fluid, and the three-fifths power 
of the distance above the heat source. 

Neither the thermal conductivity nor the tem- 
perature-dependence of the viscosity have any 
influence on this result, the reason being that, 
when the Prandtl number is large, the region of 
non-uniform temperature is very thin and is 
moreover concentrated in a region of small shear 
stress. 

Equation (17) correspondingly signifies that 
the upward velocity of fluid at the symmetry plane 
of the plume, uO, is given by: 

U o = 0.934 [$g/3/c 50]2i5 * [x/p cop cc]l,~. (20) 

This equation implies that the peak velocity 
in the plume increases with the one-fifth power 
of the height above the source, and with the 
two-fifths power of the strength of the heat 
source. 

Equations (15) and (17), taken together, signify 
that the greatest temperature at any level in the 
plume is given by: 

Hence we conclude that the maximum tem- 
perature in the plume falls off as the minus three- 
fifths power of the height; it is increased slightly 
(as the one-tenth power) by an increase in vis- 
cosity, but reduced by an increase in thermal 
conductivity. 

It might be noted that the present theory is 
most easily checked experimentally by way of a 
measurement of the peak temperature in the 
plume. 

3.2 Comparison with S-huh’s [l] result for 
Pr = 0.7 

Figure 1 also contains, as a curve marked 
Pr = 0.7, the result obtained by Schuh [l] for 
uniform transport properties. It is seen that the 
finite Prandtl number results in only modest 
changes in thef’(7) curve, which now exhibits a 
rounded peak because the buoyancy forces now 
operate over a region of finite thickness. 

It may be mentioned that Schuh found that the 
constant in the equation for (t - t ,,,) was 0.37, 
instead of the 0.32 indicated above. This results, 
no doubt, from the fact that for Pr = 0.7 the 
average velocity of the heated fluid is less than 
the maximum velocity in the plume, instead of 



THEORY OF THE STEADY LAMINAR BUOYANT FLOW 59 

being nearly equal to it as when the Prandtl 
number is very large. 
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APPENDIX 

Procedure for solving equation (7) by iterative 
quadrature 

The problem to be solved is the determination 
of fi and fm from the solution to the equation: 

f"' + $a" - +f'Z = 0 (A.1) 
with the boundary conditions: 

7J=O: f=():f'=f;:f" 

7j=a3:f'=O. 

1 
_-- 

2fA 
G4.2) 

We introduce a transformation similar to that 
of Crocco [2]: 

f E -f 'fjy)-312 64.3) 

x = f'lf6. (A.4) 

Equation (A.l) then reduces to the first-order 
form : 

5 2 + g J: -; dx - +xz = o (AS) 

while the boundary conditions reduce to: 

x = 1 : 5 zz Jfi-"I" (A.6) 

x=0:(=0. 64.7) 

Equation (A.5) can be integrated formally to 
yield, after substitution of equation (A.7) : 

$f2=$ *[ :;dxdx+r’rx’. J J (A.81 
0 

Now equation (A.8) can be used as an iteration 
formula for the determination of 5 (x). The 
zero’th approximation tco, is obtained by 
neglecting the quadrature expression entirely. 
Thus : 

3 l/2 
((0) =(&%X1 . (A.9) 

The first approximation t(r) is obtained by 
substituting tto, for 5 in the quadrature of 
(A.8). Thus : 

Y 

4 .$;, = Q J J x312 X3 

0 
x-lJ2 dx dx + 15 

=22x 5’2 - f x3 (A.lO) 

which is a better approximation. 
Further approximations involve numerical 

work. We here merely tabulate the resulting 
values for t2 at x = 1, so that the rapidity of 
convergence can be seen. (See Table 1.) 

The fifth approximation was regarded as 
sufficiently exact for our purposes. 

Table 1 

Approxima- 
tion Zero’th First Second Third Fourth Fifth 

f2 at X = 1 
/ , 

0.133 0.293 0.334 0.346 0.3519 0.3526 
f; 1.136 0.969 0.944 0.937 0.9339 0.93356 


